CV Training Session

Oct. 2013 Clinical Product Specialist Team, International Sales Dept.

All information in the presentation are highly confidential and no part of contents may be informed or transmitted without permission from ALPINION Medical Systems.

Table of Contents

- I. Purpose of Echo
- II. Useful feature & transducers
- III. Basic view & Scan Protocol
- IV. Measurements and calculation

- Method: transthoracic, transesophageal, (transvenous) intra-cardiac
- 2D, Real-time 3D
- Structure; size, shape, location, abnormal structure
- Function ; Systole, Diastole,

Conduction system

Echocardiography

Normal sinus rhythm

- Intracardiac tracings show the normal intervals between
- initiation of atrial depolarization A
- His bundle activation H
- ventricular depolarization V
- AH + HV = PR interval

All information in the presentation are highly confiden

EKG and Hemodynamic Change

Premium Transducers for Echocardiography

Harmonic Imaging Technology :

Display

Filtered Tissue Harmonic Imaging(FTHI) & Pulsed Inversion THI

Pulse Inversion

Non-Inverted

Inverted

Transmit Receive

Echo Protocol

The Heart

1. Parasternal

Long Axis View Short Axis View

2. Apical

Four Chamber View Five Chamber View Three Chamber View Two Chamber View

3. Subxiphoid or subcostal

4. Suprasternal

Basic Views

∧LPINION

Systolic Function

- Systolic Function = Ejection Fraction
- Evaluated by M-mode and Simpson's Method
- Assessment of left ventricle systolic function is an important clinical variable with respect to diagnosis, prognosis and treatment

$\frac{EDV - ESV}{EDV} \quad x \ 100 \quad \Box > EF$

Parasternal Short Axis Scan

Parasternal Short Axis View

Parasternal Short Axis Scan

Parasternal Short Axis scan

- Regurgitation
- Mitral Valve & chordae, calcification
- pressure overload
- Apex movement

Left Ventriclular Mass

 $LV \text{ Mass } (AL) = 1.05 \left\{ \left[\frac{5}{6} A_1 (a+d+t) \right] - \left[\frac{5}{6} A_2 (a+d) \right] \right\} \\ LV \text{ Mass } (TE) = 1.05 \times \left\{ (b+t)^2 \left[\frac{2}{3} (a+1) + d - \frac{d^3}{3(a+t)^2} \right] - b^2 \left[\frac{2}{3} a+d - \frac{d^3}{3a^2} \right] \right\}$

Apical 4 chamber View

- Mitral V, Tricuspid V's shape
- Each Chamber's size, measure EF,

PINION

Apical thrombosis

Apical 4 chamber- measurements

o 3

d٧

Apical 4 chamber- regurgitation flow

o 3

d٧

Biplane Simpson's method (Modified Simpson's method)

- LV volumes is measured form annulus to annulus tracing along the endocardial border of the LV
- Single 4chamber EF or bi-plane EF (4ch.+ 2ch)

- Not foreshortening of LV
- The diastolic and systolic volume are measured in the same cardiac cycle.

LA volume

- LA volumes is measured form annulus to annulus tracing along the endocardial border of the Left atrium(4ch+ 2ch)
- LA diameter "L"

[Pitfalls]

- Systole phase : measure at the largest LA
- Sympson method, or ASE standard

A4C

A2C

Left Atrial Volume = 8/3π[(A₁)(A₂)/(L)] *

Mitral Inflow and Septal Tissue doppler , and pulmonary vein doppler

- Mitral Inflow ; Peak E vel., Deccelleration Time, Peak A vel., IVRT
- Septal TDI ; systole s`, diastole e` and a`

[Pitfalls]

- Location of PW gate differ from Mitral inflow
- Septal TDI

Mitral Inflow and Septal Tissue doppler , and pulmonary vein doppler

Pul.Vein : Systole, Diastole , A reversal

[Pitfalls]

- PW gate location
- 0.5~1cm below to the Pul.vein

Diastolic function

Requirements :

- -. TDI : Ea Vel or MV Ea Vel.
- >> E/E' value : 8 normal 15> abnormal

Right Ventricle Systolic Pressure

Apical 4 chamber- Tricuspid Regurgitation

Pulmonary Artery Systolic Pressure

Without PV stenosis, PASP = RVSP

$RVSP = 4 (V_{TR})^2 + RAP$

Apical 5 chamber View

Apical 5 chamber View

Myocardial Performance Index

doppler alignment by ECG gating

LA volume or MV, LV wall motion

- LA volumes is measured form annula to annulus tracing along the endocardial border of the Left atrium(4ch+ 2ch)
- Wall motion
- Wall thickness
- Valvular & annular morphology
- Mitral regurgitation jet

Apical 2 chamber

Apical 2 chamber –LA volume

A2C

ŝ

Left Atrial Volume = 8/3π[(A₁)(A₂)/(L)] *

> * (L) is the shortest of either the A4C or A2C length

LA Vol.ml

	ref. range	mild abn.	mod. abn.	sev. abn
women	22-52	53-62	63-72	≥73
men	18-58	59-68	69–78	≥79

LA vol/BSA, ml/m²

	ref. range	mild abn.	mod. abn.	sev. abn
women	22±6	29–33	34-39	≥40
men	22±6	29-33	34–39	≥40

Subcostal View

Atrial septal defect, IVC and abdominal Aorta

- Show entire atrial septum
- Tricuspid regurgitation
- abdominal aorta (flap, artheroma)
- Change IVC diameter according to respiration
- Hepatic vein flow

Subcostal View- M-mode

Suprasternal View

DESCENDING AORTIC THROMBUS

Suprasternal View- Descending Ao doppler

MEDICAL SYSTEM

Basic & Advanced Measurements

Measurements and Calculation

Basic Measurements

- -. Systolic function
- -. Diastolic function

Advanced Measurements

- -. Valvular Function Evaluation (PISA, Continuity Equation)
- -. Shunt Study

Normal Values of Max. Blood Flow Velocities

	Mean	Range
Mitral inflow	0.90 m/s	0.6-1.3 m/s
Tricuspid inflow	0.50 m/s	0.3-0.7 m/s
RVOT flow	0.75 m/s	0.6-0.9 m/s
LVOT flow	0.90 m/s	0.7-1.1 m/s
AV flow	1.35 m/s	1.0-1.7 m/s

ЭN

MEDICAL SYSTEM

Measurements and Calculation

Basic Calculation

Bernoulli equation
 Pressure Gradient= 4V²

Advanced Measurements

- -. Continuity Equation
- -. Valve area, Shunt Study
- -. PISA method

Pulmonary Artery Diastolic Pressure

AVA by Continuity Equation

Continuity Equation

AV flow = LVOT flowCSA_{AV} X TVI_{AV} = CSA_{LVOT} X TVI_{LVOT}

Advanced Measuments_Valvular Stenosis

Continuity Equation

- Continuity Equation is used to calculate
- 1) LVOT Diameter in PLAX
 2) VTI in LVOT(PW) in apical 5 chamber
 3) VTI in AV (CW) in apical 5 chamber

LVOT flow = AV flow

Advanced Measurement_Valvular Regurgitation

Regurgitant Volume Measurement

Semi-Quantitative method

- -. Color flow area mapping
- -. Vena contracta width
- -. CW signal intensity
- -. Pulmonary venous flow
- -. Peak mitral inflow velocity

Quantitative Method

- -. Volumetric method
- -. <u>PISA</u>
- -. Automated cardiac output method

Mitral Valve Regurgitation

Semi-Quantitative Assessment (Color flow mapping)

Regurgitation Volume by PISA

• <u>'MR flow = PISA flow'</u> (Proximal Isovelocity Surface Area)

• ERO (Effective Regurgitant Orifice) x MR Velocity = $2 \times \pi \times R^2 \times PISA$ Vel.

ERO x MR Vel. = $2 \times \pi \times R^2 \times Alias$ Vel.

 $\mathsf{ERO} = \underline{2 \times \pi \times \mathbb{R}^2 \times \mathsf{Alias Vel.}}$

MR Vel.

Regurgitation Volume by PISA

4. Measure MR VTI with V max by CW

Regurgitation Volume by PISA

BP 95/50

98.4 -

Cardiology

Aliasing Vel(edit)

PISA(MR) MR Radius

-- 1 -- 2 -- 3 -- 4 -- 5